Impact of HIV on the Brain and Cognition

Eileen Martin, PhD
Professor of Psychiatry and Neurology
University of Illinois at Chicago

Supported by HHS R01 DA12828
Learning Objectives

At the conclusion of this presentation, participants should be able to:

• Identify risk factors for neurocognitive complications among HIV+ patients.

• Detect common neurocognitive deficits among HIV+ patients.

I will not discuss non-FDA approved uses of any products/devices or investigational devices.
HIV and the Brain

- Early penetration of the CNS
- Increased HIV RNA in dorsal striatum, hippocampus
- Cerebral white matter atrophy, prefrontal cortical neuron loss
- Both cortical and subcortical degeneration predict neurocognitive deficit
Pathogenesis of HIV Infection in the CNS

Bell, Histopathology, 2004
Importance of Neurocognitive Function in the Era of HAART

- Longer survival times but neurocognitive deficits persist

- Prevalence of dementia is lower, milder cognitive deficits unchanged

- Critically important for employment, driving, adherence, daily function

Heaton et al., 2004; Marcotte et al., 2006; Hinkin et al., 2002
Common Neuropsychological Test Findings

Motor and cognitive slowing

Poor memory and learning

Impaired executive functions
 Planning, judgment
 Actions based on future goals
 Impulse control

No longer a “subcortical dementia”
Model

Patient’s Copy

Time: 14 minutes
Trails B

Time to completion
Grooved Pegboard
Executive Functions: Working Memory

- Online and temporary information storage and processing

- Telephone # example

- Dorsolateral PFC, Striatum, PPC
Letter-Number Span Task

Patient Hears:

7X3M6C

Patient Says:

367CMX
Working Memory Performance

HIV- HIV+ HIV- HIV+

* p < .01

Martin et al, JINS, 1995, 2001
Executive Function: Stroop Task

BLUE
Executive Function: Stroop Task

TIGER
Executive Function: Stroop Task

BLUE
Risk factors for HIV-Associated Neurocognitive Disorder

- Not on ARV
- CD4 < 200
- Hepatitis C Coinfection
- Methamphetamine Dependence
- Aging

Martin & Paul, 2009; Gonzalez et al., 2009; Maki & Martin, 2009
Advances in ARV Therapy and Percentage of AIDS-Defining CNS Disorders at Autopsy

From Vago et al., AIDS, 2002
Estimation of CNS Penetration-Effectiveness

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>0.5</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRTIs</td>
<td>Abacavir</td>
<td>Emtricitabine</td>
<td>Didanosine</td>
</tr>
<tr>
<td></td>
<td>Zidovudine</td>
<td>Lamivudine</td>
<td>Tenofovir</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stavudine</td>
<td>Zalcitabine</td>
</tr>
<tr>
<td>NNRTIs</td>
<td>Delavirdine</td>
<td>Efavirenz</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nevirapine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIs</td>
<td>Amprenavir-r</td>
<td>Amprenavir</td>
<td>Nelfinavir</td>
</tr>
<tr>
<td></td>
<td>Indinavir-r</td>
<td>Atazanavir</td>
<td>Ritonavir</td>
</tr>
<tr>
<td></td>
<td>Lopinavir-r</td>
<td>Atazanavir-r</td>
<td>Saquinavir</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Indinavir</td>
<td>Saquinavir-r</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tipranavir-r</td>
</tr>
<tr>
<td>Fusion</td>
<td></td>
<td></td>
<td>Enfuvirtide</td>
</tr>
<tr>
<td>Inhibitor</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Letendre S, et al. 13th CROI, 2006, Abstract 74
Detectable CSF HIV RNA was significantly more common with low CPE rankings.

Antiretroviral Status and NP Performance
Women’s Interagency HIV Study

Richardson et al., JINS 2002
Risk factors for HIV-Associated Neurocognitive Disorder

- Not on ARV
- **CD4 < 200**
- Hepatitis C Coinfection
- Methamphetamine Dependence
- Aging
CD4 Count and Neurocognitive Risk

<table>
<thead>
<tr>
<th>Variable</th>
<th>Odds Ratio</th>
<th>95% CI</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD4 cell count* <200 vs >350</td>
<td>1.74</td>
<td>1.12 , 2.70</td>
<td>0.01</td>
</tr>
<tr>
<td>Nadir CD4 cell count <200 vs >350</td>
<td>1.73</td>
<td>1.18, 2.55</td>
<td><0.01</td>
</tr>
</tbody>
</table>

*cells/mm³

Adjusted for race, education, age, sex, and antiretroviral history

Risk factors for HIV-Associated Neurocognitive Disorder

- Not on ARV
- CD4 < 200
- Hepatitis C Coinfection
- Methamphetamine Dependence
- Aging
NP Abnormality and HCV Coinfection
Women’s Interagency HIV Study

Richardson et al., AIDS, 2006
Risk factors for HIV-Associated Neurocognitive Disorder

- Not on ARV
- Nadir CD4 < 200
- Hepatitis C Coinfection
- Methamphetamine Dependence
- Aging
Neurocognitive Effects of HIV and Methamphetamine

Rippeth et al., 2004
Effects of HIV and Methamphetamine on Brain Structure

Jernigan et al., 2005
Risk factors for HIV-Associated Neurocognitive Disorder

Not on ARV
CD4 < 200
Hepatitis C Coinfection
Methamphetamine Dependence
Aging
HIV and Aging

- Increase from 1000 to 10000 in past decade of HIV/AIDS cases among persons > 50
- Estimated 50% of all cases by 2015
- HIV+ persons living longer, older persons seroconverting
- Greater non-HIV dementia risk (AD, VaD)

Hardy & Vance, Neuropsychology Review, 2009
Proportion of AIDS Cases Among Adults > 50

Summary

• Despite advances in antiretroviral therapy, HIV associated neurocognitive disorders (HAND) are a persisting problem.

• There are known risk factors for vulnerability to HAND.

• Milder but clinically significant cognitive problems with implications for driving, employment, daily functions.
• ARS Questions