HIV-Related Lung Disease

Ken Kunisaki, MD, MS
Associate Professor of Medicine
Minneapolis VA and University of Minnesota
Pulmonary and Sleep Medicine
Learning Objectives
Upon completion of this presentation, learners should be better able to:

• Identify common Pulmonary complications associated with HIV
• Refer patients for appropriate diagnostic testing for COPD
• Manage stable outpatient COPD
• Recognize unique risks to inhaled corticosteroids in HIV-positive COPD patients

Faculty and Planning Committee Disclosures
Please consult your program book or the Conference App.

• GlaxoSmithKline (consulting in 2018)
• NIH grants for the study of lung disease in HIV

Off-Label Disclosure
The following off-label/investigational uses will be discussed in this presentation:

• Most inhaled corticosteroids are not labeled for use in chronic obstructive pulmonary disease (COPD)
cART Era HIV-Lung Diseases

- Bacterial pneumonia still problematic
cART Era HIV-Lung Diseases

- Bacterial pneumonia still problematic

- NCDs of the Lung
 - COPD
 - Lung Cancer
 - Pulmonary HTN
Lung cancer in HIV

Pulmonary Arterial HTN (PAH) in HIV

- Incidence 0.5% (1 in 200 patients)
 - Little change from pre-cART to modern cART era

- Mechanisms of how HIV leads to PAH unclear

- HIV is still part of a typical pulmonary HTN evaluation
cART Era HIV-Lung Diseases

- Bacterial pneumonia still problematic

- NCDs of the Lung
 - COPD
 - Lung Cancer
 - Pulmonary HTN

What is COPD?

- Collapsible
- Inflamed
- Fibrosed
Question:
Why does COPD cause shortness of breath with exertion?

Answer:
1) Hypoxia
2) Hypercarbia
3) Hyperinflation

Audience Response Question

Question:
Why does COPD cause shortness of breath with exertion?

Answer:
1) Hypoxia
2) Hypercarbia
3) Hyperinflation

ACTHIV
THE AMERICAN CONFERENCE FOR THE TREATMENT OF HIV

- Dyspnea with exertion
- Chronic cough/sputum
- Recurrent ‘bronchitis’ (exacerbations)

Table 1 Annual median costs for COPD treatment based on disease severity

<table>
<thead>
<tr>
<th>Cost categories</th>
<th>Severity of COPD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Stage I*</td>
</tr>
<tr>
<td>Total medication cost (%)</td>
<td>$512 (31)</td>
</tr>
<tr>
<td>Total non-medication costs (%)</td>
<td>$489 (29)</td>
</tr>
<tr>
<td>Hospitalization cost (%)</td>
<td>$680 (40)</td>
</tr>
<tr>
<td>Total cost</td>
<td>$1681</td>
</tr>
</tbody>
</table>

Notes: *P < 0.01 for each cost variable and total cost across the three severities of COPD. All figures are in US$ per patient.

Guarascio A. ClicioEcon Outcomes Res 2013:5:236-245
COPD Co-Morbidities

- CVD
- Lung cancer
- Pulmonary HTN
- Osteoporosis
- Sarcopenia
- Cognitive dysfunction
- Depression / Anxiety

COPD Diagnosis = SPIROMETRY

Low FEV₁/FVC ratio
Prevalence of chronic obstructive pulmonary disease in the global population with HIV: a systematic review and meta-analysis

Jean Joel Bigno, Angeladine Malaha Kenne, Serro Lem Asangbeh, Aurelie T Sibetchou

LLN

<table>
<thead>
<tr>
<th>Study</th>
<th>LLN</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Akahbi (2015)</td>
<td>43</td>
<td>356</td>
</tr>
<tr>
<td>George (2009)</td>
<td>20</td>
<td>234</td>
</tr>
<tr>
<td>Kuniaki (2016)</td>
<td>67</td>
<td>989</td>
</tr>
<tr>
<td>Makinson (2015)</td>
<td>75</td>
<td>338</td>
</tr>
<tr>
<td>Perhve-Yone (2015)</td>
<td>24</td>
<td>461</td>
</tr>
<tr>
<td>Vos (2017)</td>
<td>10</td>
<td>84</td>
</tr>
</tbody>
</table>

Random-effects meta-analysis

Heterogeneity: $I^2 = 92.7\%$ (95% CI 86–7–95.9), $t^2=0.0085$, $p=0.0001$

<table>
<thead>
<tr>
<th>Study</th>
<th>LLN</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Akahbi (2015)</td>
<td>12.08</td>
<td>(8.88–15.32)</td>
</tr>
<tr>
<td>George (2009)</td>
<td>8.55</td>
<td>(5.39–12.80)</td>
</tr>
<tr>
<td>Kuniaki (2016)</td>
<td>6.77</td>
<td>(5.29–8.32)</td>
</tr>
<tr>
<td>Makinson (2015)</td>
<td>22.19</td>
<td>(17.87–27.00)</td>
</tr>
<tr>
<td>Perhve-Yone (2015)</td>
<td>3.21</td>
<td>(3.6–7.65)</td>
</tr>
<tr>
<td>Vos (2017)</td>
<td>1.90</td>
<td>(0.86–20.81)</td>
</tr>
</tbody>
</table>

Fixed-ratio

<table>
<thead>
<tr>
<th>Study</th>
<th>LLN</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Akahbi (2015)</td>
<td>15.45</td>
<td>(11.86–19.63)</td>
</tr>
<tr>
<td>George (2009)</td>
<td>18.00</td>
<td>(13.82–22.82)</td>
</tr>
<tr>
<td>Kuniaki (2016)</td>
<td>10.46</td>
<td>(12.54–25.01)</td>
</tr>
<tr>
<td>Makinson (2015)</td>
<td>6.84</td>
<td>(3.66–10.87)</td>
</tr>
<tr>
<td>Vos (2017)</td>
<td>17.70</td>
<td>(11.16–26.00)</td>
</tr>
</tbody>
</table>

Random-effects meta-analysis

Heterogeneity: $I^2 = 92.7\%$ (95% CI 86–7–95.9), $t^2=0.0085$, $p=0.0001$

<table>
<thead>
<tr>
<th>Study</th>
<th>LLN</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Akahbi (2015)</td>
<td>5.46</td>
<td>(4.13–7.06)</td>
</tr>
<tr>
<td>George (2009)</td>
<td>23.42</td>
<td>(15.94–32.41)</td>
</tr>
<tr>
<td>Makinson (2015)</td>
<td>2.13</td>
<td>(1.04–3.99)</td>
</tr>
<tr>
<td>Perhve-Yone (2015)</td>
<td>8.95</td>
<td>(6.76–11.57)</td>
</tr>
<tr>
<td>Vos (2017)</td>
<td>17.99</td>
<td>(12.84–22.07)</td>
</tr>
</tbody>
</table>

Random-effects meta-analysis

Heterogeneity: $I^2 = 92.7\%$ (95% CI 86–7–95.9), $t^2=0.0085$, $p=0.0001$
Why is COPD Prevalence High in HIV?

Management of HIV-COPD

- Goals of COPD treatment
 - Prevent death
 - Reduce risk of exacerbations
 - Improve dyspnea / quality of life
Management of HIV-COPD

• Generally similar to non-HIV
 – Most effective intervention:
 – Oxygen for those with resting SpO2 ≤88%
 – Vaccinations
 – Pulmonary Rehabilitation
 – Inhalers
 • Short-acting bronchodilators
 • Long-acting bronchodilators
 – Long-acting beta agonists (LABA)
 – Long-acting muscarinic antagonists (LAMA)
 • Inhaled corticosteroids

Audience Response Question

Scenario: 60 y/o, cis-M, HIV+ for 15 years, on TDF/FTC/EVG/c, HIV-RNA <50 copies/mL, CD4+ 590 cells/mm³. Here for post-hospital discharge follow-up.

Medical History:
COPD, FEV₁ 1.98L [53% of predicted normal]
• Chronic sputum production; recurrent bronchitis—2 courses of antibiotics this winter. Recent 3-day hospitalization for COPD exacerbation.
• Former smoker (40 pack-years; quit 10 years ago).
Impaired Fasting Glucose
Osteopenia
Meds: Albuterol MDI prn; Guaifenesin QID; Stribild QDay; Tylenol prn.
PE: Normal vitals, SpO2 90% on room air
 Moderate expiratory wheezes.
The next most appropriate medication to add is:

a) Tiotropium (Long-acting muscarinic antagonist [LAMA])
b) Olodaterol (Long-acting beta agonist [LABA])
c) Fluticasone (Inhaled Corticosteroid [ICS])
d) Tiotropium + Olodaterol + Fluticasone (LABA + LAMA + ICS)

Inhaled Corticosteroids (ICS) in COPD

• ICS reduce risk of COPD exacerbations

• But ICS increase risk of bacterial pneumonia (Drummond B. JAMA 2008; Suissa S. Thorax 2013)

• And ICS interact with boosters (ritonavir and cobicistat)
 – Particularly strong interactions with fluticasone
 – Potentially less with beclomethasone (Boyd S. JAIDS 2013)
A Word About Inhalers in COPD

Prepare for first use

1. Remove clear base
 - Keep the cap closed.
 - Press the safety catch while firmly pulling off the clear base with your other hand.

2. Insert cartridge
 - Insert the narrow end of the cartridge into the inhaler.
 - Place the inhaler on a firm surface and push down firmly until it snaps into place.

3. Replace clear base
 - Put the clear base back into place until it clicks.
 - If the clear base doesn’t click, push down firmly against a firm surface (see step 2).

4. Turn
 - Keep the cap closed.
 - Turn the clear base in the direction of the arrows on the label until it clicks (half a turn).

5. Open
 - Open the cap until it snaps fully open.

6. Press
 - Press the dose-release button.
 - Close the cap.
 - Repeat steps 4-6 until a cloud is visible.
 - After a cloud is visible, repeat steps 4-6 three more times.

Daily use (TOP)

1. TURN
 - Keep the cap closed.
 - TURN the clear base in the direction of the arrows on the label until it clicks (half a turn).

2. OPEN
 - OPEN the cap until it snaps fully open.

3. PRESS
 - Breathe out slowly and fully.
 - Close your lips around the mouthpiece without covering the air vents.
 - While holding a slow, deep breath through your mouth, PRESS the dose-release button and continue to breathe in.
 - Hold your breath for 10 seconds or for as long as comfortable.
 - Repeat: TURN, OPEN, PRESS (TOP) for a total of 2 puffs.
Management of HIV-COPD

• Generally same as non-HIV
 – Most effective intervention:
 – Oxygen for those with resting SpO2 ≤88%
 – Vaccinations
 – Pulmonary Rehabilitation
 – Inhalers
 • Short-acting bronchodilators
 • Long-acting bronchodilators
 – Long-acting beta agonists (LABA)
 – Long-acting muscarinic antagonists (LAMA)
 • Inhaled corticosteroids
 – Multidisciplinary COPD Case Management?

COPD Management Guidelines

• Global Initiative for Chronic Obstructive Lung Disease (GOLD)
 – www.goldcopd.org

• American Thoracic Society (ATS)
 – www.thoracic.org/statements/copd
cART Era HIV-Lung Diseases

- Bacterial **pneumonia** still problematic

- NCDs of the Lung
 - **COPD**
 - **Lung Cancer**
 - Pulmonary HTN

These are my personal views, and not those of the US Government, Department of Veterans Affairs, or affiliated funders/institutions.
Supplemental Slides

Lung Cancer Screening in HIV

USPSTF:
- Age 55 – 80 years
- ≥30 pack-years of smoking
- Currently smoking or quit within past 15 years

- HIV+ = Diagnosed earlier, fewer pack-years, worse prognosis
Lung Cancer Screening in HIV

Optimal screening criteria

<table>
<thead>
<tr>
<th>Performance characteristics of variable screening thresholds for WIHS</th>
<th>Age</th>
<th>Pack-years</th>
<th>Quit time</th>
<th>Sensitivity</th>
<th>Specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td>USPSTF</td>
<td>55</td>
<td>30</td>
<td>15</td>
<td>16%</td>
<td>93%</td>
</tr>
<tr>
<td>Optimal</td>
<td>49</td>
<td>16</td>
<td>15</td>
<td>52%</td>
<td>75%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Performance characteristics of variable screening thresholds for MACS</th>
<th>Age</th>
<th>Pack-years</th>
<th>Quit time</th>
<th>Sensitivity</th>
<th>Specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td>USPSTF</td>
<td>55</td>
<td>30</td>
<td>15</td>
<td>24%</td>
<td>94%</td>
</tr>
<tr>
<td>Optimal</td>
<td>43</td>
<td>19</td>
<td>15</td>
<td>82%</td>
<td>76%</td>
</tr>
</tbody>
</table>

- Replacing age criteria with HIV markers did not improve test characteristics beyond already optimized criteria

Right now = USPSTF
Future = Tailored to HIV?