Update on HIV Drug Resistance

Daniel R. Kuritzkes, MD
Division of Infectious Diseases
Brigham and Women’s Hospital
Harvard Medical School
Learning Objectives
Upon completion of this presentation, learners should be better able to:

- Review resistance patterns to newest antiretroviral drugs
- Discuss implications of drug resistance on sequencing of antiretroviral regimens

Off-Label Disclosure
- Etravirine is not approved for use in treatment-naïve patients
Etravirine and Rilpivirine
Etravirine

- TMC125 identified through screening for activity against NNRTI-resistant viruses (K103N)
- In vitro passage experiments suggested high genetic barrier to resistance
- Known and novel NNRTI resistance mutations identified through in vitro passage experiments
 - L100I, Y181C, G190E, Y318F
 - V179I/F
- Data from DUET and phase 2 trials identified 17 clinically significant ETV resistance mutations
DUET-1 and -2: Etravirine resistance-associated mutations

- ETV mutations (n=17) weighted based upon impact on response (weight factor)1:
 - 3.0: Y181I/V
 - 2.5: L100I, K101P, Y181C, M230L
 - 1.5: V106I, V179F, E138A, G190S
 - 1.0: V90I, A98G, K101E/H, V179D/T, G190A

- Most common resistance mutations emerging at ETV failure in DUET trials:
 - V179F/I and Y181C/I2,3

Phase 2 pilot study of ETR in treatment-naïve patients (SENSE)

- ART-naïve patients randomized to ETR (400 mg QD; N=79) or EFV (N=78) plus 2 NRTI

Gazzard et al AIDS 2011
Table 2. Virological failures by treatment arm: HIV RNA levels and detection of genotypic resistance (IAS-USA or Bennett lists).

<table>
<thead>
<tr>
<th>Patient</th>
<th>Baseline</th>
<th>Week 24</th>
<th>Week 36</th>
<th>Week 48</th>
<th>FU</th>
<th>Resistance mutations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Etravirine arm (n=4)³</td>
</tr>
<tr>
<td>1</td>
<td>122 000</td>
<td><50</td>
<td><50</td>
<td>700</td>
<td>124</td>
<td>None</td>
</tr>
<tr>
<td>2</td>
<td>78 800</td>
<td><50</td>
<td>100, 104</td>
<td><50</td>
<td><50</td>
<td>None</td>
</tr>
<tr>
<td>3</td>
<td>178 000</td>
<td><50</td>
<td>85</td>
<td>68</td>
<td><50</td>
<td>None</td>
</tr>
<tr>
<td>4</td>
<td>118 000</td>
<td><50</td>
<td>114</td>
<td><50</td>
<td>50</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Efavirenz arm (n=7)</td>
</tr>
<tr>
<td>1</td>
<td>48 900</td>
<td><50</td>
<td>104</td>
<td><50</td>
<td>10700</td>
<td>Missing</td>
</tr>
<tr>
<td>2</td>
<td>3160</td>
<td><50</td>
<td>1350</td>
<td>240, 62</td>
<td><50, 73</td>
<td>Not amplified</td>
</tr>
<tr>
<td>3</td>
<td>397 000</td>
<td>123</td>
<td>111</td>
<td><50</td>
<td>81</td>
<td>None</td>
</tr>
<tr>
<td>4</td>
<td>3 810 000</td>
<td>107</td>
<td>129</td>
<td>56</td>
<td><50</td>
<td>None</td>
</tr>
<tr>
<td>5</td>
<td>240 000</td>
<td><50</td>
<td><50</td>
<td>2180</td>
<td></td>
<td>V106l + M184l</td>
</tr>
<tr>
<td>6</td>
<td>82 800</td>
<td><50</td>
<td>72</td>
<td><50</td>
<td>81600</td>
<td>K103N</td>
</tr>
<tr>
<td>7</td>
<td>412 000</td>
<td>33400</td>
<td>51 800</td>
<td>26 100</td>
<td></td>
<td>K103N + M184V + P225H</td>
</tr>
</tbody>
</table>

¹Gazzard et al AIDS 2011
DUET-1 and -2: Predictors of ETV Response and Resistance at Failure

Vingerhoets J et al. AIDS 2010
Rilpivirine (TMC278)

- Like etravirine, selected by screening for compounds active against viruses with K103N
- **Similar activity profile as etravirine**
 - Unaffected by K103N
 - Modest effect of Y181C
- **Slow to select resistance in vitro**

Azijn et al. Antimicrob Agents Chemother 2010
ECHO, THRIVE: Rilpivirine (TMC278) vs EFV in Treatment-Naive Patients

- Randomized, double-blind phase III trials

Stratification by BL HIV-1 RNA < 100,000 vs ≥ 100,000 copies/mL, NRTI use

Wk 48 primary analysis

Wk 96 final analysis

ECHO (N = 690)
- Treatment-naive,
- HIV-1 RNA ≥ 5000 copies/mL
- no NNRTI RAMs,
- susceptible to NRTIs

THRIVE (N = 678)

Rilpivirine 25 mg QD + TDF/FTC 300/200 mg QD (n = 346)

EFV 600 mg QD + TDF/FTC 300/200 mg QD (n = 344)

Rilpivirine 25 mg QD + 2 NRTIs† (n = 340)

EFV 600 mg QD + 2 NRTIs† (n = 338)

*THRIVE only. †Selected by investigator from ABC/3TC, TDF/FTC, ZDV/3TC.

Drug resistance in ECHO and THRIVE

<table>
<thead>
<tr>
<th></th>
<th>TMC278 N=686</th>
<th>EFV N=682</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virologic failure with resistance data, n</td>
<td>62</td>
<td>28</td>
</tr>
<tr>
<td>No NNRTI(^1) or NRTI(^2) RAMs</td>
<td>29%</td>
<td>43%</td>
</tr>
<tr>
<td>Emergent(^\d) NNRTI(^1) RAMs</td>
<td>63%</td>
<td>54%</td>
</tr>
<tr>
<td>– Most frequent NNRTI RAM</td>
<td>E138K</td>
<td>K103N</td>
</tr>
<tr>
<td>Emergent(^\d) NRTI(^2) RAMs</td>
<td>68%</td>
<td>32%</td>
</tr>
<tr>
<td>– Most frequent NRTI RAM</td>
<td>M184I</td>
<td>M184V</td>
</tr>
</tbody>
</table>

- 31/62 (50%) of TMC278 failures were phenotypically resistant to TMC278
 - Of these, 90% were phenotypically cross-resistant to etravirine

Molina et al. Lancet. 2011
Cohen et al. Lancet 2011
Early emergence of M184I in patients receiving 3TC monotherapy

Schuurman et al J Infect Dis 1995
M184V is fitter than M184I

Larder et al. Science 1995
Replication capacity of E138K and M184I mutants in presence of ETV and/or 3TC

Replication capacity of E138K and M184I mutants in presence of RPV and 3TC

(A) 0.2 nM RPV

(B) 0.08 nM RPV + 8 μM 3TC

Hu & Kuritzkes 19th CROI, Seattle, WA 2012
Virion-associated RT activity of HIV-1 wild-type and mutant viruses

Elvitegravir
Primary Integrase Strand Transfer Inhibitor (INSTI) Resistance-Associated Mutations (RAMs)

EVG Primary INSTI-RAMs

<table>
<thead>
<tr>
<th></th>
<th>IN</th>
<th>G</th>
<th>H</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elvitegravir</td>
<td>66</td>
<td>92</td>
<td>97*</td>
<td>147</td>
</tr>
<tr>
<td>RAL Primary INSTI-RAMs</td>
<td>148</td>
<td>155</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RAL Primary INSTI-RAMs

<table>
<thead>
<tr>
<th></th>
<th>IN</th>
<th>G</th>
<th>H</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raltegravir</td>
<td>92</td>
<td>97*</td>
<td>143</td>
<td>148</td>
</tr>
<tr>
<td>155</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cross-study clinical development of INSTI-RAMs
*T97A may require additional mutations for resistance

Study Design 236-0102

Treatment naive (N = 700 planned)

- US & Puerto Rico
- Randomized 1:1
- Stratification by HIV-1 RNA (>100,000 c/mL)

Primary Endpoint: Proportion with HIV-1 RNA < 50 c/mL at Week 48
- FDA snapshot analysis, 12% non-inferiority margin
- HIV-1 RNA: Amplicor HIV-1 Monitor Test, version 1.5
Study Design 236-0103

Treatment naive (N = 700 planned)

- International
- Randomized 1:1
- Stratification by HIV-1 RNA (>100,000 c/mL)

Primary Endpoint: Proportion with HIV-1 RNA < 50 c/mL at Week 48
- FDA snapshot analysis, 12% non-inferiority margin
- HIV-1 RNA: Amplicor HIV-1 Monitor Test, version 1.5

DeJesus E, et al., CROI 2012; Seattle. Poster 627.
236-0102 and 236-0103: Results

Sax et al Lancet 2012; DeJesus et al Lancet 2012
QUAD Virologic Failures with EVG Resistance show RAL Cross-resistance (>biological cut-off)

<table>
<thead>
<tr>
<th>INSTI</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>EVG</td>
<td>>198</td>
<td>149</td>
<td>111</td>
<td>54</td>
<td>51</td>
<td>44</td>
<td>36</td>
<td>36</td>
<td>28</td>
<td>23</td>
<td>5.6</td>
</tr>
<tr>
<td>RAL</td>
<td>28</td>
<td>6.2</td>
<td>3.8</td>
<td>6.0</td>
<td>12</td>
<td>3.6</td>
<td>3.0</td>
<td>11</td>
<td>3.3</td>
<td>8.7</td>
<td>1.8</td>
</tr>
</tbody>
</table>

Biological Cut-Offs: EVG 2.5; RAL 1.5

Mead fold change value for EVG was >67-fold
Mean fold change value for RAL = 7.9-fold

Dolutegravir
VIKING study results

<table>
<thead>
<tr>
<th>Variable</th>
<th>Cohort I, DTG 50 mg Once Daily (n = 27)</th>
<th>Cohort II, DTG 50 mg Twice Daily (n = 24)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efficacy at day 11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary end point, no. (%)</td>
<td>21 (78)</td>
<td>23 (96)</td>
</tr>
<tr>
<td>Plasma HIV-1 RNA level, log_{10} copies/mL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline, mean (SD)</td>
<td>4.40 (0.79)</td>
<td>4.38 (0.74)</td>
</tr>
<tr>
<td>Day 11, mean (SD)</td>
<td>2.94 (1.01)</td>
<td>2.62 (0.78)</td>
</tr>
<tr>
<td>Change from baseline, mean (SD)</td>
<td>−1.45 (0.77)</td>
<td>−1.76 (0.54)</td>
</tr>
<tr>
<td>Model-adjusted change, mean (SD)</td>
<td>−1.45 (0.08)</td>
<td>−1.76 (0.09)</td>
</tr>
<tr>
<td>Adjusted treatment difference, mean (95% CI)</td>
<td></td>
<td>−0.32 (−0.57 to −0.06)(^b)</td>
</tr>
<tr>
<td>Efficacy at week 24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HIV-1 RNA load, copies/mL, no. (%)(^c)</td>
<td></td>
<td></td>
</tr>
<tr>
<td><50</td>
<td>11 (41)</td>
<td>18 (75)</td>
</tr>
<tr>
<td><400</td>
<td>14 (52)</td>
<td>20 (83)</td>
</tr>
</tbody>
</table>

\(^a\) Model adjusted for age, gender, race, at-risk group, previous baseline HIV-RNA load, prior ARV exposure, and randomized arm

\(^b\) Model adjusted for age, gender, race, at-risk group, and randomized arm

\(^c\) Model adjusted for age, gender, race, at-risk group, prior ARV exposure, randomized arm, and baseline HIV-RNA load
SAILING study design

HIV-1 ART-experienced, INI-naive
HIV-1 RNA >400 c/mL\(^a\)
1:1 Randomization
Stratified by HIV-1 RNA
(≤ or >50,000), DRV/r use and # of fully active drugs

Randomized Phase

DTG 50 mg QD +
RAL PBO + BR

RAL 400 mg BID +
DTG PBO + BR

Randomization

Week 24
Planned Interim

Week 48

\(^a\) At Screening and a second consecutive test >400 c/mL within 4 months prior to Screening (if Screening HIV-1 RNA >1000 c/mL, no additional HIV-1 RNA assessment was needed)
PBO, placebo; BR, background regimen

Pozniak et al, 20\(^{th}\) CROI, 2013; Abstract, 179LB
SAILING study results

DTG 50 mg QD was statistically superior to RAL 400 mg BID at Week 24.

Week 24 adjusted difference in response (95% CI):
+9.7 in favor of DTG (3.1%, 15.9%); P=0.003

*Adjusted difference based on stratified analysis adjusting for Baseline HIV-1 RNA (≤50,000 c/mL vs >50,000 c/mL), DRV/r use without primary PI mutations and Baseline PSS (2 vs <2)
SINGLE study design

Primary endpoint:
Proportion with HIV-1 RNA <50 c/mL at Week 48, FDA snapshot analysis,
-10% non-inferiority margin with pre-specified tests for superiority

Secondary endpoints:
Tolerability, long-term safety, immunologic, health outcome and viral resistance

Walmsley et al ICAAC 2012
SINGLE: primary endpoint analysis

- **DTG 50mg + ABC/3TC QD** was statistically superior to **TDF/FTC/EFV** at week 48 (primary endpoint).
- Subjects receiving **DTG + ABC/3TC** achieved virologic suppression faster than **TDF/FTC/EFV**, median time to HIV-1 RNA <50c/mL of 28 days (DTG +ABC/3TC) vs 84 days (TDF/FTC/EFV; p<0.0001)

WK 48 difference in response (95% CI):
+7.4% (+2.5% to +12.3%); p=0.003
SINGLE: Resistance at virologic failure

<table>
<thead>
<tr>
<th></th>
<th>DTG 50mg +ABC/3TC QD (N=414)</th>
<th>TDF/FTC/EFV (N=419)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subjects with PDVF</td>
<td>18 (4%)</td>
<td>17 (4%)</td>
</tr>
<tr>
<td>PDVF genotypic pop.</td>
<td>11</td>
<td>9</td>
</tr>
<tr>
<td>PDVF Genotypic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(RT Results at Bas.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>and PDVF)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NRTI tmt-emergent</td>
<td>0</td>
<td>1(K65R)</td>
</tr>
<tr>
<td>major mutations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NNRTI tmt-emergent</td>
<td>0</td>
<td>4 (K101E, K103N, G190A)*</td>
</tr>
<tr>
<td>major mutations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PDVF Genotypic</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>(IN Results at Bas.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>and PDVF)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INI-r tmt-emergent</td>
<td>0**</td>
<td>0</td>
</tr>
<tr>
<td>major substitution</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* n=1 with K101E, n=1 with K103N, n=1 with G190A and n=1 with K103N+G190A

**E157Q/P polymorphism detected with no significant change in IN phenotypic susceptibility
Implications for ART sequencing*

- Etravirine unlikely to be useful as “salvage” NNRTI following rilpivirine failure
 - Impact of E138K on efavirenz and nevirapine uncertain
- Raltegravir and elvitegravir cannot be used sequentially
- Dolutegravir likely to be active in setting of limited raltegravir and elvitegravir resistance
- Utility of raltegravir and elvitegravir after initial dolutegravir failure uncertain

*Opinion of Daniel R. Kuritzkes, MD, expert.